Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Exp Hematol Oncol ; 13(1): 41, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622749

RESUMO

Despite major therapeutic advances for two decades, including the most recently approved anti-HER2 drugs, brain metastatic localizations remain the major cause of death for women with metastatic HER2 breast cancer. The main reason is the limited drug passage of the blood-brain barrier after intravenous injection and the significant efflux of drugs, including monoclocal antibodies, after administration into the cerebrospinal fluid. We hypothesized that this efflux was linked to the presence of a FcRn receptor in the blood-brain barrier. To overcome this efflux, we engineered two Fab fragments of trastuzumab, an anti-HER2 monoclonal antibody, and did a thorough preclinical development for therapeutic translational purpose. We demonstrated the safety and equal efficacy of the Fabs with trastuzumab in vitro, and in vivo using a patient-derived xenograft model of HER2 overexpressing breast cancer. For the pharmacokinetic studies of intra-cerebrospinal fluid administration, we implemented original rat models with catheter implanted into the cisterna magna. After intraventricular administration in rats, we demonstrated that the brain-to-blood efflux of Fab was up to 10 times lower than for trastuzumab, associated with a two-fold higher brain penetration compared to trastuzumab. This Fab, capable of significantly reducing brain-to-blood efflux and enhancing brain penetration after intra-cerebrospinal fluid injection, could thus be a new and original effective drug in the treatment of HER2 breast cancer brain metastases, which will be demonstrated by a phase I clinical trial dedicated to women in resort situations.

2.
Biomedicines ; 10(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36551773

RESUMO

Macrophages play a key role in the inflammatory phase of wound repair and foreign body reactions-two important processes in the Masquelet-induced membrane technique for extremity reconstruction. The macrophage response depends largely on the nature of the biomaterials implanted. However, little is known about the influence of the macrophage microenvironment on the osteogenic properties of the induced membrane or subsequent bone regeneration. We used metakaolin, an immunogenic material, as an alternative spacer to standard polymethylmethacrylate (PMMA) in a Masquelet model in rats. Four weeks after implantation, the PMMA- and metakaolin-induced membranes were harvested, and their osteogenic properties and macrophage microenvironments were investigated by histology, immunohistochemistry, mass spectroscopy and gene expression analysis. The metakaolin spacer induced membranes with higher levels of two potent pro-osteogenic factors, transforming growth factor-ß (TGF-ß) and bone morphogenic protein-2 (BMP-2). These alternative membranes thus had greater osteogenic activity, which was accompanied by a significant expansion of the total macrophage population, including both the M1-like and M2-like subtypes. Microcomputed tomographic analysis showed that metakaolin-induced membranes supported bone regeneration more effectively than PMMA-induced membranes through better callus properties (+58%), although this difference was not significant. This study provides the first evidence of the influence of the immune microenvironment on the osteogenic properties of the induced membranes.

3.
J Funct Biomater ; 13(4)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36547526

RESUMO

The most used etchant in dental daily practice is the phosphoric acid (P.A.; 37%). However, acid etchants can induce necrosis on the oral mucosa and cause the ulceration of periodontal tissue when a rubber dam is not used. V-prep is a new practical alternative, and it has satisfactory results. It is used as a preparation before the application of a resin-modified glass ionomer composite (RMGIC) to bond the orthodontic brackets. The aim of this study was to investigate the effect of the V-prep on oral gingival fibroblasts cells by comparing the cell damage and cell viability after the use of V-prep and a conventional phosphoric acid etchant with different application times and concentrations. Therefore, Gingival fibroblasts passage 6 (GFP6) was grown and treated with an acid etchant and V-prep at three different concentrations (1:1, 1:2 and 1:10) for two different application durations (30 s and 1 min). The morphological changes, cell death and cell viability were assessed. Pyknosis, karyolysis, nucleus reversible and irreversible damages and membrane destruction were observed for both of the etchants at the higher concentrations and longer application durations. Mann-Whitney U-tests were used for the statistical analyses. The application of the V-prep for 30 s showed better values than the acid etchant did in the cell damage analysis and cell viability analysis (p = 0.03). V-prep at a 1:10 concentration applied for a 30 s duration can preserve the viability of gingival fibroblasts cells up to 100%. The toxicity of V-prep is equal or lower than the toxicity of the acid etchant that is commonly used in dentistry. Thus, the V-prep can be used with precautions intra-orally, and it should be applied on the enamel as a gel for 30 s only before it is rinsed and removed.

4.
Chembiochem ; 23(16): e202200265, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35748603

RESUMO

Fucoidan is a natural sulfated polysaccharide with a large range of biological activities including anticancer and anti-oxidation activities. Hepatocellular carcinoma is the fourth most common aggressive cancer type. The aim of this study was to investigate the bioactivity of free fucoidan versus its vectorization using nanoparticles (NPs) in human hepatoma cells, Huh-7. Iron oxide NPs were functionalized with fucoidan by a one-step surface complexation. NP cellular uptake was quantified by magnetic measurement at various extracellular iron concentrations. Cell invasion and migration were reduced with NPs while free fucoidan increases these events at low fucoidan concentration (≤0.5 µM). Concomitantly, a high decrease of reactive oxygen species production related with a decrease of the matrix metalloproteinase-9 activity and an increase of its expression was observed with NPs compared to free fucoidan. A proteomic analysis evidenced that some fucoidan regulated proteins appeared, which were related to protein synthesis, N-glycan processing, and cellular stress. To our knowledge, this is the first study which reveals such activity induced by fucoidan. These results pave the way for USPIO-fucoidan-NPs as potential theranostic nanotools for hepatocellular carcinoma treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Polissacarídeos , Medicina de Precisão , Proteômica
5.
J Histotechnol ; 45(2): 66-76, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35135439

RESUMO

Mutation of just a single extracellular matrix protein, a receptor or enzyme involved in connective tissue metabolism is sufficient to cause systemic pathologies and failure of tissues that are subjected to strong mechanical stresses. Skin histological and computerized image analyses can provide a good qualitative and quantitative indication of these inherited connective tissue diseases. In this study, skin biopsies from young (10 to 25 years) and middle-aged patients (26 to 50 years) suffering from Ehlers-Danlos syndromes (EDS), Marfan syndrome (MS) or pseudoxanthoma elasticum (PXE) were studied after specific staining of both the collagen and elastic networks. Findings from the histomorphometric analyses conducted on skin sections of the patients with EDS, MS and PXE were compared to skin sections of healthy subjects from the same age groups. Our results show that both the collagen and the elastic networks were affected in all the studied pathological cases, but that the adverse changes to the elastic network in older patients were distinct from the physiological changes observed during aging process for healthy subjects. This degenerative process may be explained by an added phenomenon involving a general connective tissue proteolysis.


Assuntos
Doenças do Tecido Conjuntivo , Síndrome de Ehlers-Danlos , Síndrome de Marfan , Pseudoxantoma Elástico , Adolescente , Adulto , Criança , Colágeno/análise , Tecido Conjuntivo/patologia , Doenças do Tecido Conjuntivo/genética , Doenças do Tecido Conjuntivo/metabolismo , Doenças do Tecido Conjuntivo/patologia , Síndrome de Ehlers-Danlos/metabolismo , Síndrome de Ehlers-Danlos/patologia , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Síndrome de Marfan/patologia , Pessoa de Meia-Idade , Pseudoxantoma Elástico/metabolismo , Pseudoxantoma Elástico/patologia , Pele/patologia , Adulto Jovem
6.
J Contemp Dent Pract ; 22(8): 951-958, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34753851

RESUMO

AIM: The aim of the present work was to explain the poor biointegration of acellular dermal xenogeneic matrix, leading to an unfavorable gingival healing following a grafting procedure for the treatment of soft tissue deficiencies. BACKGROUND: Numerous works have demonstrated the successful use of acellular dermal matrix (ADM) in soft tissue augmentation procedures. However, spare human investigations reported adverse healing outcomes at microscopic level. CASE DESCRIPTION: Three patients showing various soft tissue deficiencies (recession, gingival thickening) requiring a gingival augmentation were grafted using an ADM porcine acellular dermal matrices (pADM) as a soft tissue substitute. For this purpose, appropriate soft tissue augmentation surgeries were performed and the grafted pADM was left for proper healing. Biopsies were harvested from two out of the three patients, respectively, at 11 and 27 weeks in order to conduct a histological evaluation of the pADM's doubtful biointegration. Moreover, the ultrastructural analysis of pADM was performed using scanning electron microscopy, and additional histological procedures were used to assess its ability to support human gingival fibroblast cultures. Signs of gingival inflammation persisted several months postoperatively. Histologically, numerous inflammatory cells characterized the grafted site. Indeed, the high number of foreign body giant cell granulomas and the very densified newly formed collagen fibers highlighted a fibrotic process within gingival connective tissue. The ultrastructural and histological analysis showed that pADM was characterized by very thick and dense collagen bundles demonstrating a nonphysiological collagen network organization. Cell culture experiments showed fibroblasts proliferating on the matrix surface, sparing its deeper part, even though the collagen matrix degradation seemed to occur following a gradient from the pADM surface inward. CONCLUSION: The unfavorable clinical results may be caused by the poor colonization of matrix cells and poor angiogenesis leading to the inadequate biointegration of pADM. Hence, the pADM structure in terms of porosity and degradability should be further investigated. CLINICAL SIGNIFICANCE: The present cases highlighted a poor integration of pADM following soft tissue grafting procedures, which was caused by the inadequate ultrastructure of the used pADM. Therefore, despite the utility of such tissue substitutes, their manufacturing improvement could be required to obtain a better biointegration.


Assuntos
Derme Acelular , Animais , Colágeno , Fibroblastos , Gengiva , Humanos , Suínos , Cicatrização
7.
Clin Orthop Relat Res ; 479(12): 2737-2751, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406150

RESUMO

BACKGROUND: Usually, the two-stage Masquelet induced-membrane technique for extremity reconstruction begins with a polymethylmethacrylate (PMMA) cement spacer-driven membrane, followed by an autologous cancellous bone graft implanted into the membrane cavity to promote healing of large bone defects. In exceptional cases, spacers made of polypropylene disposable syringes were successfully used instead of the usual PMMA spacers because of a PMMA cement shortage caused by a lack of resources. However, this approach lacks clinical evidence and requires experimental validation before being recommended as an alternative to the conventional technique. QUESTIONS/PURPOSES: To (1) develop and (2) validate a critical-sized femoral defect model in rats for two stages of the Masquelet technique and to (3) compare the biological and bone healing properties of polypropylene-induced membranes and PMMA-induced membranes in this model. METHODS: Fifty male Sprague Dawley rats aged 8 weeks old received a 6-mm femur defect, which was stabilized with an external fixator that was converted into an internal device. In the development phase, the defect was filled with PMMA in 16 rats to determine the most favorable timing for bone grafting. Two rats were excluded since they died of anesthetic complications. The other 14 were successively euthanized after 2 weeks (n = 3), 4 weeks (n = 4), 6 weeks (n = 4), and 8 weeks (n = 3) for induced membrane analyses. In the validation phase, 12 rats underwent both stages of the procedure using a PMMA spacer and were randomly assigned to two groups, whether the induced membrane was preserved or removed before grafting. To address our final objective, we implanted either polypropylene or PMMA spacers into the defect (Masquelet technique Stage 1; n = 11 rats per group) for the period established by the development phase. In each group, 6 of 11 rats were euthanized to compare the biological properties of polypropylene-induced membranes and PMMA-induced membranes using histological qualitative analysis, semiquantitative assessment of the bone morphogenic protein-2 content by immunostaining, and qualitative assessment of the mesenchymal stromal cell (MSC; CD31-, CD45-, CD90+, and CD73+ phenotypes) content by flow cytometry. Quantitative measurements from serum bone turnover markers were also performed. The five remaining rats of each group were used for Masquelet technique Stage 2, in which rat bone allografts were implanted in the induced membrane cavity after the polypropylene or PMMA spacers were removed. These rats recovered for 10 weeks before being euthanized for microCT quantitative measurements and bone histology qualitative assessment to evaluate and compare the extent of bone regeneration between groups. RESULTS: Induced membrane analyses together with serum bone turnover measurements indicated that a 4-week interval time between stages was the most favorable. Removal of the induced membrane before grafting led to almost constant early implant failures with poor bone formation. Four-week-old rats with polypropylene-triggered induced membranes displayed similar histologic organization as rats with PMMA-driven induced membranes, without any difference in the cell density of the extracellular matrix (4933 ± 916 cells per mm2 for polypropylene versus 4923 ± 1284 cells per mm2 for PMMA; p = 0.98). Induced membrane-derived MSCs were found in both groups with no difference (4 of 5 with polypropylene versus 3 of 3 with PMMA; p > 0.99). Induced membrane bone morphogenic protein-2 immunolabeling and serum bone turnover marker levels were comparable between the polypropylene and PMMA groups. MicroCT analysis found that bone regeneration in the polypropylene group seemed comparable with that in the PMMA group (29 ± 26 mm3 for polypropylene versus 24 ± 18 mm3 for PMMA; p > 0.99). Finally, qualitative histological assessment revealed a satisfactory endochondral ossification maturation in both groups. CONCLUSION: Using a critical-sized femoral defect model in rats, we demonstrated that polypropylene spacers could induce membrane encapsulation with histologic characteristics and bone regenerative capacities that seem like those of PMMA spacers. CLINICAL RELEVANCE: In a same bone site, polymers with close physical properties seem to lead to similar foreign body reactions and induce encapsulating membranes with comparable bone healing properties. Polypropylene spacers made from disposable syringes could be a valuable alternative to PMMA. These results support the possibility of a cementless Masquelet technique in cases of PMMA shortage caused by a lack of resources.


Assuntos
Cimentos Ósseos/efeitos adversos , Transplante Ósseo/instrumentação , Equipamentos Descartáveis , Polimetil Metacrilato/administração & dosagem , Seringas , Animais , Remodelação Óssea , Transplante Ósseo/métodos , Modelos Animais de Doenças , Desenho de Equipamento , Masculino , Polipropilenos , Ratos , Ratos Sprague-Dawley
8.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298982

RESUMO

Engineering of biomimetic motives have emerged as promising approaches to improving cells' binding properties of biomaterials for tissue engineering and regenerative medicine. In this study, a bio-adhesive ligand including cell-binding domains of human fibronectin (FN) was engineered using recombinant protein technology, a major extracellular matrix (ECM) protein that interacts with a variety of integrins cell-surface's receptors and other ECM proteins through specific binding domains. 9th and 10th fibronectin type III repeat containing Arginine-Glycine-Aspartic acid (RGD) and Pro-His-Ser-Arg-Asn (PHSRN) synergic site (FNIII9-10) were expressed in fusion with a Colored Multi Affinity Tag (CMAT) to develop a simplified production and characterization process. A recombinant fragment was produced in the bacterial system using E. coli with high yield purified protein by double affinity chromatography. Bio-adhesive surfaces were developed by passive coating of produced fragment onto non adhesive surfaces model. The recombinant fusion protein (CMAT-FNIII9/10) demonstrated an accurate monitoring capability during expression purification and adsorption assay. Finally, biological activity of recombinant FNIII9/10 was validated by cellular adhesion assay. Binding to α5ß1 integrins were successfully validated using a produced fragment as a ligand. These results are robust supports to the rational development of bioactivation strategies for biomedical and biotechnological applications.


Assuntos
Marcadores de Afinidade , Materiais Biomiméticos , Fibronectinas , Oligopeptídeos , Fragmentos de Peptídeos , Proteínas Recombinantes de Fusão/química , Adsorção , Adesão Celular , Materiais Revestidos Biocompatíveis , Escherichia coli , Matriz Extracelular/química , Vetores Genéticos , Integrina alfa5beta1/metabolismo , Ligantes , Espectrometria de Massas , Poliestirenos , Ligação Proteica , Domínios Proteicos , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
9.
Regen Biomater ; 6(6): 311-323, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31827885

RESUMO

Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural techniques, advanced scaffolds are currently developed as substitutes for bone tissue engineering. In this study, we investigated the capability of a chemically cross-linked ε-caprolactone-based poly(ester-urethane-urea) (PCLU) scaffold to support bone regeneration. In vitro assays demonstrated that PCLU scaffolds could be colonized by cells through direct cell seeding and cell migration from outside to scaffold inside. Moreover, PCLU scaffolds could provide a suitable environment for stem cells proliferation in a 3D spatial arrangement, and allowed osteogenic differentiation under appropriate induction. In vivo results revealed the osteogenic properties of PCLU scaffolds through a drilled-hole femoral bone defect repair improvement in rats. Using histology and microtomography analysis, we showed that PCLU scaffolds fit well the bone cavity and were eventually entrapped between the newly formed trabeculae. Finally, no sign of inflammation or rejection was noticed. We envision that PCLU scaffolds can provide the clinicians with a substitute having appropriate characteristics for the treatment of bone defects.

10.
Polymers (Basel) ; 11(6)2019 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-31181822

RESUMO

Due to their elastomeric behavior, polyurethane-based scaffolds can find various applications in soft-tissue engineering. However, their relatively inert surface has to be modified in order to improve cell colonization and control cell fate. The present study focuses on porous biodegradable scaffolds based on poly(ester-urea-urethane), functionalized concomitantly to the scaffold elaboration with low-molecular-weight (LMW) fucoidan; and their bio-activation with platelet rich plasma (PRP) formulations with the aim to promote cell response. The LMW fucoidan-functionalization was obtained in a very homogeneous way, and was stable after the scaffold sterilization and incubation in phosphate-buffered saline. Biomolecules from PRP readily penetrated into the functionalized scaffold, leading to a biological frame on the pore walls. Preliminary in vitro assays were assessed to demonstrate the improvement of scaffold behavior towards cell response. The scaffold bio-activation drastically improved cell migration. Moreover, cells interacted with all pore sides into the bio-activated scaffold forming cell bridges across pores. Our work brought out an easy and versatile way of developing functionalized and bio-activated elastomeric poly(ester-urea-urethane) scaffolds with a better cell response.

11.
Biomed Opt Express ; 10(4): 1649-1659, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31086698

RESUMO

In tissue engineering, porous biodegradable scaffolds are developed with morphological, chemical and mechanical properties to promote cell response. Therefore, the scaffold characterization at a (sub)micrometer and (bio)molecular level is paramount since cells are sensitive to the chemical signals, the rigidity, and the spatial structuring of their microenvironment. In addition to the analysis at room temperature by conventional quasi-static (0.1-45 Hz) mechanical tests, the ultrasonic (10 MHz) and µ-Brillouin inelastic light scattering (13 GHz) were used in this study to assess the dynamical viscoelastic parameters at different frequencies of elastomeric scaffolds. Time-temperature superposition principle was used to increase the high frequency interval (100 MHz-100 THz) of Brillouin experiments providing a mean to analyse the viscoelastic behavior with the fractional derivative viscoelastic model. Moreover, the µ-Raman analysis carried out simultaneously during the µ-Brillouin experiment, gave the local chemical composition.

12.
Stem Cells Int ; 2015: 283796, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161094

RESUMO

By using a high internal phase emulsion process, elastomeric poly(ε-caprolactone urethane) (PCLU) scaffolds were designed with pores size ranging from below 150 µm to 1800 µm and a porosity of 86% making them suitable for bone tissue engineering applications. Moreover, the pores appeared to be excellently interconnected, promoting cellularization and future bone ingrowth. This study evaluated the in vitro cytotoxicity of the PCLU scaffolds towards human mesenchymal stem cells (hMSCs) through the evaluation of cell viability and metabolic activity during extract test and indirect contact test at the beginning of the scaffold lifetime. Both tests demonstrated that PCLU scaffolds did not induce any cytotoxic response. Finally, direct interaction of hMSCs and PCLU scaffolds showed that PCLU scaffolds were suitable for supporting the hMSCs adhesion and that the cells were well spread over the pore walls. We conclude that PCLU scaffolds may be a good candidate for bone tissue regeneration applications using hMSCs.

13.
J Histochem Cytochem ; 62(10): 751-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25023614

RESUMO

Specific staining of the extracellular matrix components is especially helpful in studying tissue remodeling, particularly in the case of connective tissue pathologies. As developed by Junqueira and colleagues in 1979, specific staining by Picrosirius red is one of the most important stains to study collagen networks in different tissues. Under polarized light, collagen bundles appear green, red or yellow, and are easily differentiated from the black background, thus allowing for quantitative morphometric analysis. As Junqueira and colleagues point out, many studies use color staining to differentiate collagen bundles and to specify collagen types, yet other studies report that polarized colors only reflect fiber thickness and packing. Using a simple histological example, our study illustrates the inability of Picrosirius red staining to differentiate collagen types, since the absorbed amount of polarized light by this dye strictly depends on the orientation of the collagen bundles.


Assuntos
Compostos Azo/análise , Colágeno/análise , Colágeno/metabolismo , Tecido Conjuntivo/patologia , Coloração e Rotulagem/métodos , Adulto , Tecido Conjuntivo/metabolismo , Síndrome de Ehlers-Danlos/metabolismo , Síndrome de Ehlers-Danlos/patologia , Feminino , Humanos , Luz , Masculino , Microscopia , Pele/citologia , Pele/metabolismo , Pele/patologia , Adulto Jovem
14.
Biomed Mater Eng ; 23(4): 289-97, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23798650

RESUMO

BACKGROUND: Introduction of a new generation of artificial ligaments for ACL reconstruction, the Ligament Augmentation and Reconstruction System (LARS), gives promising clinical results [1]. The current literature supports the use of LARS from short to medium term. To go even further to improve the biocompatibility of this biomaterial, poly(sodium styrene sulfonate) (polyNaSS) was grafted onto its surface. Studies using sheep animal model showed improvement of knee functionalities with this grafted artificial ligament and a better adhesion of human cell lines. OBJECTIVES: To better understand this in vivo improvement of integration with the bioactivated artificial prosthesis, in vitro studies were leaded using human ligament fibroblasts. METHODS: Human ligament fibroblasts isolated from human ruptured ACL were amplified and seeded onto poly(NaSS) grafted and non-grafted PET scaffold (Lars ligament) under standard culture conditions. Cellularized fibers were observed under scanning electron microscopy and histological and immunohistological studies were performed. RESULTS: Cells are localized around the grafted PET fibers of the bioactive ligament and penetrate in the scaffold. On ungrafted fibers, cells stay around the scaffold. On grafted fibers, collagen I appears strongly organized whereas is thin and dispersed on non grafted fibers. Finally, grafting altered localization of decorin. CONCLUSIONS: PolyNaSS grafting enhances human ligament fibroblast organisation in vitro in contact with biomaterial and improves collagen and decorin deposits around fibers.


Assuntos
Reconstrução do Ligamento Cruzado Anterior/instrumentação , Ligamento Cruzado Anterior/citologia , Materiais Biocompatíveis/química , Fibroblastos/fisiologia , Poliestirenos/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Adulto , Adesão Celular/fisiologia , Técnicas de Cultura de Células , Proliferação de Células , Forma Celular , Células Cultivadas , Colágeno Tipo I/análise , Decorina/análise , Proteínas da Matriz Extracelular/análise , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Polietilenotereftalatos/química , Próteses e Implantes , Propriedades de Superfície , Adulto Jovem
15.
Mar Drugs ; 11(4): 1351-69, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23612369

RESUMO

Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS) secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS) displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP) secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair.


Assuntos
Fibroblastos/efeitos dos fármacos , Glicosaminoglicanos/farmacologia , Polissacarídeos Bacterianos/farmacologia , Engenharia Tecidual/métodos , Materiais Biocompatíveis/isolamento & purificação , Materiais Biocompatíveis/farmacologia , Biotecnologia/métodos , Proliferação de Células/efeitos dos fármacos , Tecido Conjuntivo/metabolismo , Colágenos Fibrilares/química , Fibroblastos/metabolismo , Glicosaminoglicanos/isolamento & purificação , Humanos , Polissacarídeos Bacterianos/isolamento & purificação , Vibrio/química
16.
Angiogenesis ; 16(3): 575-93, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23386104

RESUMO

Osteoprotegerin (OPG), a soluble tumour necrosis factor receptor superfamily member, inhibits RANKL-mediated osteoclastogenesis. We have previously reported that OPG enhances the proangiogenic properties of endothelial colony-forming cells (ECFCs) in vitro, and promotes vasculogenesis in vivo. Here we investigated how OPG promotes neovascularisation. Proteomic experiments showed that OPG pretreatment affected ECFCs protein expression in two ways, 23 spots being down-regulated and 6 upregulated. These spots corresponded to proteins involved in cell motility, adhesion, signal transduction and apoptosis. In keeping with these proteomic results, we found that OPG induced ECFCs adhesion to activated endothelium in shear stress conditions, promoting intermediate but not focal adhesion to fibronectin and collagen. Treatment with OPG induced a reorganization of the ECFCs cytoskeleton, with the emergence of cell protrusions characteristic of a migratory phenotype. These effects correlated with decreased FAK phosphorylation and enhanced integrin αVß3 expression. OPG drastically reduced caspase-3/7 activities and maintained ECFCs viability after 48 h of treatment. All these effects were significantly attenuated by ECFCs incubation with the CXCR4 antagonist AMD-3100, and by prior heparan sulphate proteoglycan disruption. The proangiogenic properties of OPG appeared to be mediated by the proteoglycan syndecan-1, although OPG 1-194 lacking its heparin-binding domain still had pro-vasculogenic effects in vitro and in vivo. These results suggest that OPG may interact with ECFCs by binding to HSPGs/syndecan-1, thereby induce an anti-adhesive effect and promoting ECFCs migration through a SDF-1/CXCR4 dependent pathway.


Assuntos
Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Osteoprotegerina/farmacologia , Benzilaminas , Caspase 3/metabolismo , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclamos , Citoesqueleto/efeitos dos fármacos , Células Endoteliais/fisiologia , Quinase 1 de Adesão Focal/metabolismo , Regulação da Expressão Gênica/fisiologia , Compostos Heterocíclicos , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina alfaVbeta3/metabolismo , Neovascularização Fisiológica/fisiologia , Osteoprotegerina/metabolismo , Fosforilação/efeitos dos fármacos , Proteômica , Sindecana-1/metabolismo
17.
J Chromatogr B Analyt Technol Biomed Life Sci ; 849(1-2): 261-72, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17081811

RESUMO

Proteomics relies on the separation of complex protein mixtures using bidimensional electrophoresis. This approach is largely used to detect the expression variations of proteins prepared from two or more samples. Recently, attention was drawn on the reliability of the results published in literature. Among the critical points identified were experimental design, differential analysis and the problem of missing data, all problems where statistics can be of help. Using examples and terms understandable by biologists, we describe how a collaboration between biologists and statisticians can improve reliability of results and confidence in conclusions.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Proteômica/métodos , Modelos Estatísticos , Reprodutibilidade dos Testes , Projetos de Pesquisa
18.
Rapid Commun Mass Spectrom ; 18(23): 2785-94, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15508137

RESUMO

The use of robots has major effects on maximizing the proteomic workflow required in an increasing number of high-throughput projects and on increasing the quality of the data. In peptide mass finger printing (PMF), automation of steps downstream of two-dimensional gel electrophoresis is essential. To achieve this goal, the workflow must be fluid. We have developed tools using macros written in Microsoft Excel and Word to complete the automation of our platform. Additionally, because sample preparation is crucial for identification of proteins by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, we optimized a sandwich method usable by any robot for spotting digests on a MALDI target. This procedure enables further efficient automated washing steps directly on the MALDI target. The success rate of PMF identification was evaluated for the automated sandwich method, and for the dried-droplet method implemented on the robot as recommended by the manufacturer. Of the two methods, the sandwich method achieved the highest identification success rate and sequence coverage of proteins.


Assuntos
Mapeamento de Peptídeos/métodos , Proteínas/química , Proteoma/análise , Robótica/métodos , Neoplasias do Colo/química , Eletroforese em Gel de Poliacrilamida , Humanos , Células-Tronco Mesenquimais/química , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
Artigo em Inglês | MEDLINE | ID: mdl-15236693

RESUMO

The aim of the present work was to develop a highly productive and simplified process for active human galectin-1 (Gal1) production. Gal1 is a beta-galactoside binding lectin that differentially affects biological and cellular functions such as immune surveillance and apoptosis. These effects have attracted the attention of researchers in cell biology, biochemistry and immunology. However, the production of sufficient amounts of recombinant human Gal1 (rhGal1) is needed to study of the effects of Gal1 during cell treatments. To this end, an high-yield expression of rhGal1 was achieved by high-cell density fed-batch cultivation using an exponential glycerol feeding strategy and rhGal1 was purified by a one-step purification scheme using affinity chromatography.


Assuntos
Galectina 1/isolamento & purificação , Escherichia coli/genética , Galectina 1/genética , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
20.
J Clin Immunol ; 24(2): 162-9, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15024183

RESUMO

Intraarticular gene transfer with adeno-associated virus (AAV) vectors may allow efficient therapeutic transgene expression within the joint. In an effort to understand potential obstacles (particularly immunity against AAV vectors) to intraarticular gene therapy better, our objective was to determine whether synovial fluid (SF) influenced AAV-mediated gene transfer to chondrocytes. SF and sera from 21 patients with joint diseases were collected. Neutralizing activity against AAV/interleukin-4 (IL-4) was determined by assessing the ability of SF or serum to inhibit AAV/IL-4 transduction to the C20A4 chondrocytes. IgGs were purified from SF by salt-dependent chromatography. Anti-AAV IgG levels were determined by ELISA in the SF. SF and sera from all the patients inhibited AAV-mediated gene transfer to chondrocytes. Six SF out of 21 exerted a stronger inhibition. Serum from healthy patients were also inhibitory. Purified IgGs from SF exhibited inhibition patterns similar to those seen with whole SF. Anti-AAV IgG were found in SF from 13 patients out of 18. Moreover, in the SF, anti-AAV IgG level was correlated with the neutralizing activity (p < 0.001, r = 0.716). A correlation was observed between levels of inhibition by the SF and serum (P < 0.0001, r = 0.813). Inhibition of AAV/IL-4 infection of C20A4 cells by SF and sera was abolished by increasing the number of AAV/IL-4 particles. SF from patients with joint disease consistently inhibited AAV infection of chondrocytes in vitro. This effect was ascribable to IgG, most probably directed against AAV. In the future, these data may be useful for tailoring intraarticular AAV-mediated gene therapy to individual patients.


Assuntos
Condrócitos/imunologia , Dependovirus/imunologia , Vetores Genéticos/imunologia , Líquido Sinovial/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/análise , Anticorpos Antivirais/isolamento & purificação , Linhagem Celular , Condrócitos/virologia , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/uso terapêutico , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/isolamento & purificação , Artropatias/imunologia , Artropatias/terapia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA